Dynamic Neural Radiance Fields (Dynamic NeRF) enhance NeRF technology to model moving scenes. However, they are resource intensive and challenging to compress. To address this issue, this paper presents WavePlanes, a fast and more compact explicit model. We propose a multi-scale space and space-time feature plane representation using N-level 2-D wavelet coefficients. The inverse discrete wavelet transform reconstructs N feature signals at varying detail, which are linearly decoded to approximate the color and density of volumes in a 4-D grid. Exploiting the sparsity of wavelet coefficients, we compress a Hash Map containing only non-zero coefficients and their locations on each plane. This results in a compressed model size of ~12 MB. Compared with state-of-the-art plane-based models, WavePlanes is up to 15x smaller, less computationally demanding and achieves comparable results in as little as one hour of training - without requiring custom CUDA code or high performance computing resources. Additionally, we propose new feature fusion schemes that work as well as previously proposed schemes while providing greater interpretability.
@article{azzarelli2023waveplanes,
title={WavePlanes: A compact Wavelet representation for Dynamic Neural Radiance Fields},
author={Azzarelli, Adrian and Anantrasirichai, Nantheera and Bull, David R},
journal={arXiv preprint arXiv:2312.02218},
year={2023}
}