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I. INTRODUCTION

The supplementary material is accompanied with rendered
results and side-by-side video comparisons, which can also be
accessed online.

In this document, we provide an overview of the differences
in our hyper parameters compared to the K-Planes and 4D-GS
models in Section II. In Section III we provide the per-scene
quality and compression results. In Section IV, we provide
additional experiments. For example we evaluate the effect of
varying the hard threshold parameter. Finally, in Section V we
discuss the paper’s limitations.

II. ADDITIONAL HYPER PARAMETERS

All configuration files are provided with our code online.
As the proposed work builds upon existing methods, we used
the same hyper parameters as K-Planes and 4D-GS with minor
differences:

1) For the synthetic D-NeRF data set: We tuned the weights
for regularizing WavePlanes-NeRF per scene. For com-
pression a hard threshold of 0.3 was selected. Addi-
tionally, for some synthetic dynamic scenes our model
performs best with lower spatial resolutions as shown
in Table I. Hence, scenes with finer details use H =
W =256, while scenes with lower frequency detail use
H = W =1281. The chosen resolution for each scene is
provided in the configuration files in our code online.

2) For the real DyNeRF scenes [1] we use 8× down
sampling to generate the IST weights and 2× down
sampling to train the model. The main difference is that
WavePlanes-NeRF uses feature length of 64, double the
feature length used in K-Planes. This doesn’t significantly
increase computation however it does improve quality.
For WavePlanes-GS we use a feature length of 32.
Finally, for compression a hard threshold of 0.1 was
selected.

Furthermore, the level-dependent wavelet coefficient scaling
factor k was selected by testing the WavePlanes-NeRF model
on the T-Rex D-NeRF scene in Table II. This factor was used
for all experiments including the WavePlanes-GS model.

III. PER-SCENE RESULTS

Real dynamic scenes: In Table III we breakdown the
results from each scene in the DyNeRF data set.
Synthetic dynamic scenes: In Table IV we breakdown and
compare the results from the D-NeRF data set.

1These parameters were defined in the main paper

TABLE I: Varying the resolution of WavePlanes-NeRF feature
grids for various D-NeRF scenes. The resolution of the result-
ing features planes is shown, where the wavelet coefficients
will have a maximum resolution half that of P 0

c

Resolution PSNR ↑ SSIM ↑ Time ↓
P 0
c P 1

c
T-Rex scene, D-NeRF [2]

128 64 30.88 0.9749 62 mins
256 128 31.34 0.9782 72 mins
512 256 30.75 0.9761 127 mins

Lego, D-NeRF [2]
128 64 25.25 0.9380 60 mins
256 128 25.19 0.9876 68 mins
512 256 24.76 0.9377 113 mins

Bouncing Balls, D-NeRF [2]
128 64 37.71 0.9876 70 mins
256 128 36.66 0.9840 74 mins
512 256 34.74 0.9802 110 mins

TABLE II: Level-dependent scaling coefficients, k, used for
the comparing different levels of wavelet decomposition of
the WavePlanes-NeRF model. Accomplished on the T-Rex
D-NeRF scene. Training time is provided in minutes. Front
and Back indicate the PSNR applied to the foreground and
background respectively, accomplished using morphological
dilation on the alpha channel of the ground truth RGBA
images

Scaling Factor, k PSNR ↑ SSIM ↑Whole Front Back
N = 2 levels, 72 mins

[1, 1, 1] 31.30 20.63 76.01 0.977
[1, 0.8, 0.4] 31.31 20.64 75.78 0.978
[1, 0.4, 0.2] 31.34 20.67 78.05 0.978
[1, 0.8, 0.2] 31.33 20.66 76.75 0.978

N = 3 levels, 84 mins
[1, 1, 1, 1] 30.52 19.53 75.39 0.975

[1, 0.8, 0.6, 0.4] 30.98 20.27 75.41 0.977
[1, 0.5, 0.3, 0.1] 30.64 19.97 78.00 0.975
[1, 0.8, 0.4, 0.2] 30.37 19.70 76.21 0.975

N = 4 levels, 95 mins
[1, 1, 1, 1] 30.03 19.37 62.34 0.973

[1, 0.5, 0.4, 0.2, 0.1] 30.65 19.98 75.08 0.975
[1, 0.8, 0.6, 0.4, 0.2] 30.22 19.56 69.29 0.974

Per-scene compression results: In Table III and Table IV
we provide the per-scene model size after compression. The
proposed compression scheme performs optimally in the
presence of empty space, i.e. when the wavelet coefficients
are near-zero. This is best exemplified by the results from
the D-NeRF scenes, where emptier scenes undergo higher
compression.



TABLE III: Quantitative results from the multi-view real DyNeRF dynamic scenes [1]. * Uses 8x down sampling for IST
weights. **Trained on the first 10 seconds of a 40 second clip

Method Spinach Cut Flame Flame Sear Mean Size
Beef Salmon Steak Steak MB

Per-Scene Model Size ↓

K-Planes-Compact 69MB 72MB 84MB 65MB 66MB 71MB -
Ours-NeRF 58MB 58MB 57MB 49MB 62MB 57MB -

Ours-GS 33MB 34MB 49MB 32MB 32MB 36MB -

PSNR ↑

K-Planes 32.19 31.93 28.71 ** 31.80 31.89 31.30 250
HexPlanes 32.04 32.55 29.47 32.08 32.09 31.65 200

4D-GS 32.460 32.90 29.20 32.51 32.49 31.91 90

K-Planes-Compact* 29.22 30.93 25.27 ** 29.07 29.64 28.83 71
WavePlanes-NeRF* 31.04 31.45 28.25 ** 30.49 30.37 30.32 57

WavePlanes-GS 31.97 32.63 28.90 32.10 32.34 31.59 36

SSIM ↑

K-Planes 0.968 0.965 0.942 ** 0.970 0.971 0.963 -
4D-GS 0.949 0.957 0.917 0.954 0.957 0.947 -

K-Planes-Compact 0.915 0.932 0.871 0.929 0.930 0.915 -
WavePlanes-NeRF* 0.9191 0.9338 0.8928 0.9364 0.9271 0.9218 -

WavePlanes-GS* 0.9434 0.9442 0.9106 0.9514 0.9525 0.9404 -

Fig. 1: Selecting a hard threshold: Quality deprecation as a
result of high pass filtering is not proportional to decrease in
model size as hard thresholding can act as a denoiser. We
exemplify this on the T-Rex scene [2] where a theshold of 0.3
was selected.

IV. ADDITIONAL EXPERIMENTS

A. Selecting the Hard Threshold

We investigate the effect of varying the hard threshold
parameter for compression in Fig. 1 on WavePlanes-NeRF and
show that quality does not decrease proportionally to size.
This demonstrates that our compression can provide minor
denoising. This warrants further investigation.

B. Visualizing Feature Planes

The six feature planes for WavePlanes-NeRF, P0
c , are visu-

alized in Fig. 2 for the D-NeRF T-Rex scene. This provides an
example of how empty space and/or space time can consume
a lot of data, however this also indicates that our compression
algorithm will not perform as well for denser scenes. This is
exemplified by comparing the WavePlanes-NeRF results on
the D-NeRF (less dense) and DyNeRF (more dense) scenes in

Table III and Table IV. Whereby, denser scenes require more
memory.

C. Decomposing Static and Dynamic Components

In Fig. 3, we illustrate how our representation can be
decomposed into static and dynamic components. To render
a space-only scene (visualizing only static features), we force
the condition fct(q) = 1 by zeroing the wavelet coefficients
for all space-time planes. The space-only rendered frames are
subtracted from the final render to visualize the effect of space-
time features. Note that we do not use fc ̸=ct(q) = 1 to render
space-time features directly as they can not be interpreted by
the linear decoder. This adds to our interpretation of space-
time features, whereby we treat them as linear transformations
for the space-only features that can be interpreted as basis
features. Interestingly, this behavior is similar to dynamic
NVS that use deformation fields to linearly transform the
position of volumes in a static field. Though instead, the plane
representation only modifies the density and color of volumes
in time.

V. PAPER LIMITATIONS

A. Quantitative Image Assessment Metrics

It is challenging to discern true dynamic performance
from the variety of metrics that have been proposed, such
as SSIM, D-SSIM [3], MS-SSIM [4] and LPIPS [5]. For
synthetic RGBA data sets we also used the alpha channel to
separate foreground and background predictions during testing
and validation. Considering that all these metrics evaluate
stationary frames at different times, we are limited by our
ability to evaluate temporal features such as smoothness and
consistency. Additionally, the data sets we use do not support
this type of evaluation. For instance, the D-NeRF data set
is strictly provided as a set of “teleporting” frames so could



TABLE IV: Quantitative results from the monocular synthetic D-NeRF dynamic scenes [2]. N refers to the wavelet level
(we select N = 3)

Method Hell Mutant Hook Balls Lego T-Rex Stand Jumping Mean Size
Warrior Up Jacks MB

Per-Scene Model Size ↓

Ours-NeRF 3.6MB 3.4MB 5.9MB 1.3MB 9.7MB 14.6MB 2.7MB 9.0MB 6.3MB -
Ours-GS 13.8MB 16.3MB 15.3MB 9.9MB 33.4MB 26.9MB 10.3MB 9.0MB 16.9MB -

PSNR ↑

DNeRF 25.02 31.29 29.25 32.80 21.64 31.75 32.79 32.80 29.67 13
TiNeuVox-s 27.00 31.09 29.30 39.05 24.35 29.95 32.89 32.33 30.75 8
TiNeuVox-B 28.17 33.61 31.45 40.73 25.02 32.70 35.43 34.23 32.67 48

V4D 27.03 36.27 31.04 42.67 25.62 34.53 37.20 35.36 33.72 377
K-Planes 25.60 33.56 28.21 38.99 25.46 31.28 33.27 32.00 31.05 200

HexPlanes 24.24 33.79 28.71 39.69 25.22 30.67 34.36 31.65 31.04 200
4D-GS 28.71 37.59 32.73 40.63 25.03 34.23 38.11 35.42 34.06 18

Ours-NeRF 25.85 33.25 27.77 38.42 25.31 31.46 33.27 31.87 30.90 6.3
Our-GS 29.05 38.71 33.40 40.45 25.02 35.88 39.10 34.87 34.56 16.9

SSIM ↑

DNeRF 0.95 0.97 0.96 0.98 0.83 0.97 0.98 0.98 0.95 -
TiNeuVox-s 0.95 0.96 0.95 0.99 0.88 0.96 0.98 0.97 0.96 -
TiNeuVox-B 0.97 0.98 0.97 0.99 0.92 0.98 0.99 0.99 0.97 -

V4D 0.97 0.98 0.97 0.99 0.92 0.98 0.99 0.98 0.97 -
K-Planes 0.951 0.982 0.951 0.989 0.947 0.980 0.980 0.974 0.969 -

HexPlanes 0.94 0.98 0.96 0.99 0.94 0.98 0.98 0.98 0.97 -
4D-GS 0.9733 0.9880 0.9760 0.9943 0.9376 0.9850 0.9898 0.9857 0.9787 -

Ours-NeRF 0.9536 0.9775 0.9461 0.9880 0.9428 0.9786 0.9779 0.9734 0.9672 -
Ours-GS 0.9752 0.9906 0.9783 0.9942 0.9393 0.9878 0.9913 0.9848 0.9802 -

not be used for evaluating spatiotemporal smoothness using
ground truth renders.

B. Hardware Failure Case

Our work began with 24 GB of GPU memory and 32 GB
of RAM. This works for the D-NeRF set. However, for the
DyNeRF data set the amount of RAM required for IST weight
generation is significant (>256GB). We were unable to attain
this during our research. Instead, we found that 98 GB of
RAM was sufficient and low cost, despite limiting us to ×8
down sampling for IST weight generation.

VI. FAILED DESIGNS

The final design was not the first solution we conceived. In
this section we detail several technical designs that failed.

A. K-Planes Time Smoothness Regularizer

As our implementation initially forked off the K-Planes
code, our earliest design utilized the TS regularizer proposed
in [6] instead of the proposed SST regularizer. In Table V
we compare the results from using TS regularization and SST
regularization, showing that for WavePlanes-NeRF the SST
regularizer is a better fit.

LTV =
1

|C|n2

∑
c,i,t

||Pi,t−1
c − 2Pi,t

c +Pi,t+1
c ||22 (1)

TABLE V: Comparing SST and TS regularizers on the T-
Rex D-NeRF scene [2]

Regularizer PSNR ↑ SSIM ↑Front Back Whole
SST 20.74 76.41 31.41 0.9781
TS 18.70 75.29 29.37 0.9721

B. Smoothing Temporal Coefficients with Wavelet Filter Ori-
entation

Each set of mother wavelet coefficients contains com-
ponents for horizontal, diagonal and vertical filters which
we define as Ωc,ω ∈ Ωc where ω ∈ [horizontal,
vertical, diagonal]. This offers the opportunity to refactor
the SST function (a 1-d Laplacian approximation of the planes
second derivative) to regularize coefficient filters directly. This
also allows us to prioritize smoothness for each filter direction,
where the horizontal filter exists along the time-axis, the
vertical filter along the spatial axis and the diagonal filter
along t = x = z = y. Hence we use (2) for each filter
where c = ct. To regularize the father wavelet coefficients,
which do not contain directional filters, we apply the 1-D
Laplacian approximation across the horizontal and vertical
axis and add the result to LSST−horizontal and LSST−vertical,
respectively. For ω = diagonal, we average the second order
approximations along both axis’ of the father wavelet planes
and add the result to LSST−diagonal. This ensures that all
coefficients are regularized for a given orientation. The result
of using these separately is compared with the proposed SST



(a) Space-only Feature Planes

(b) Space-time Feature Planes

Fig. 2: Visualizing the space-only and space-time feature
planes for WavePlanes-NeRF. Black to white pixels indicate
negative to positive feature values, respectively. (a) Space-
only feature planes are visualized. (b) Space-time features are
visualized where the horizontal axis represents time
TABLE VI: Comparing directionally dependent smooth-
ness regularizers on the wavelet coefficients for the T-Rex
D-NeRF data set [2]. * indicates the final Wave Planes model
which uses the proposed SST regularization

ω
PSNR ↑

Whole Front
* 31.34 20.67

horizontal 29.23 18.55
diagonal 29.14 18.41
vertical 29.08 18.48

regularization in Table VI for WavePlanes-NeRF.

LSST−ω =
1

|C|n2

∑
c,i,t

||Ωi,t−1
c,ω − 2Ωi,t

c,ω +Ωi,t+1
c,ω ||22 (2)
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